Dealing with
Bad Vibes
in Open Airwaves

Stefan Schmid (UPB)

Joint research with:
Andrea Richa (ASU)
Christian Scheideler (UPB)
Jin Zhang (ASU)
The Dilemma of Shared Resources

• Can „theoretically“ be accessed by everybody!

• How to coordinate (efficient and/or fair) access?
Wireless Networks

- Communication „over the air“
- Can be accessed by everybody...
Wireless Networks

- Can be accessed by everybody...
 - Thus: collisions...
Wireless Networks

- Can be accessed by everybody...
- Thus: collisions... interference...
Wireless Networks

- Can be accessed by everybody...
 - Thus: collisions... interference... jammers
Jammers

• **Medium access protocols** often not robust (e.g., 802.11)

• Problem: often easy and „cheap“ to implement:
Model

- Clique and UDG
More on the Model

• One communication channel

• Nodes:
 - **Cannot send and listen** concurrently (*one* antenna!)
 - Cannot distinguish between collision and jamming
 - Can recognize an **idle channel**
 - **Backlogged:** Always s.th. to send

• **Adversary:**
 - Can jam a \((1-\varepsilon)\) fraction of all time slots at all positions in the plane
 - Bursty (in time interval \(T\), at most \(\varepsilon T\))
 - **Adaptive:** Knows entire history (but not whether nodes will send in *this* round)
Goal for the Clique?

Each node v has sending probability p_v (adjusted dynamically):

When is throughput good?
Property of p_vs?

Too high \rightarrow collisions
Too low \rightarrow idle slots

$$\sum_{v \in D(u)} p_v = \Theta(1)$$

... is a good choice.
The MacJam Strategy

Motivation: if \# idle slots = \# success slots (exactly one transmission) ...

... cumulative probability is around 1!

- Can be observed locally
- Strategy independent of blocked slots!

(Too) simple MAC protocol (for some $\gamma > 0$):

If (idle): $p_v := (1 + \gamma) p_v$
If (success): $p_v := 1/(1 + \gamma) p_v$

Problem?
The MacJam Strategy

(Too) simple MAC protocol (for some $\gamma > 0$):

- If (idle): $p_v := (1 + \gamma) p_v$
- If (success): $p_v := 1/(1 + \gamma) p_v$

Problem: if p_v initially very high, there are hardly any idling or successful slots to observe!

Therefore: introduce a threshold T_v
- if no successful transmission within T_v, decrease p_v

"Constant competitive throughput against strong adaptive jammer!" (PODC)
"Competitive Throughput"

C-competitive = For any sufficiently large number of time steps, the nodes manage to perform successful message transmissions in at least a c-fraction of the non-jammed time steps (w.h.p.)
Singlehop vs Multihop

Different nodes in different situations (jammed, collisions, idle, successful reception...)!
Clique Strategy Does not Work!

Example:
All neighbors may be jammed, so center node increases probability!
But: no successful reception with T_v, so decrease!
The MacJam Strategy for UDGs

- The MacJam protocol:

\[T_v = 1, \; c_v = 1, \; p_v = p_{\text{max}}; \]

In each round:
- decide to send with prob \(p_v \);
- if decide not to send:
 - if sense idle channel: \(p_v = (1+\gamma) \; p_v; \; T_v --; \)
 - if succ reception: \(p_v = 1/(1+\gamma) \; p_v; \; T_v --; \)
 - \(c_v ++; \)
- if \((c_v > T_v) \)
 - \(c_v = 1; \)
- if no idle or succ in last \(T_v \) steps:
 - \(p_v = 1/(1+\gamma) \; p_v; \; T_v = T_v + 2; \)

New: idle is okay, too!

New: +2 (not +1)
Analysis

- Some „ideas“ only

- Protocol is interplay of many dependent randomized local algorithms

- Cumulative probability thresholds: $\rho_{\text{green}}, \rho_{\text{yellow}}, \rho_{\text{red}}$

 Show that beyond „good cumulative probabilities“, there is a high drift towards „better values“

- Techniques: Martingale theory, stochastic dominance, etc.
Simulations

- 500 nodes uniformly at random in 4x4 plane, $\epsilon \ldots 0.5$
- Converges fast to good cumulative probabilities
- Around 30% of unjammed slots are successful transmissions
- T_v values around 2 or 3

![Graph showing cumulative probability per unit disk and average successful ratio over number of rounds.](image)
Ideas for Extensions/Applications

• How to make it fair?
 - Problem: When a node is successful, other nodes will reduce $p_v \Rightarrow$ node may be even more successful in future
 - Solution: Nodes remember number of nodes seen so far, and maintain a counter for successful transmissions.
 - Adapt their probabilities in a more equal manner (all around $1/n$ in clique)!

• Leader Election
 - Contention resolution with MacJam
 - Leaders increase sending probability faster (to constant!)
 - Dedicated leader slots determined online
 - When leader offline: new one is selected (self-stabilization property)

See also the upcoming talk by Marek!
Leader Election (Ideas only)

- Initially: arbitrary situation!

<table>
<thead>
<tr>
<th>Node</th>
<th>c_v</th>
<th>ls_1</th>
<th>ls_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Stefan Schmid @ “DISC”, 2009
Leader Election (Ideas only)

Goal: one leader, „synchronous“ nodes!

Stefan Schmid @ “DISC”, 2009
Leader Election (Ideas only)

Mc = 0

Collision!
Leader Election (Ideas only)

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[c_v = 6 \]
\[ls_1 = 1 \]
\[ls_2 = 3 \]

\[Mc = 1 \]

LEADER alive!
Leader Election (Ideas only)

$c_v = 6$
ls$_1 = 1$
ls$_2 = 3$

Mc = 2

Follower message gets through!
Leader Election (Ideas only)

LEADER alive, but jammed (no problem)!

Mc = 3

F

LEADER alive, but jammed (no problem)!

25
Analysis

• Leaders soon have a high sending probability
 - Higher increase of sending probability

• Nodes synchronize after short time

• When a leader message gets through, we are done!

\[P_L = \Theta(1) \]

\[P_F = O(1) \]
Conclusion & Future Work

- Jammers exciting research challenge
 - May improve robustness and performance in existing networks

- Many open questions
 - Provable MAC performance
 - Multihop networks
 - SINR networks
 - Fairness
 - Energy efficiency
 - Applications (do everything again, and MAC alone is not enough...)

- But we are working on it... 😊

Thank you for your attention!
Questions and Inputs?