Coresets and Approximate Clustering for Bregman Divergences

Marcel R. Ackermann
University of Paderborn, Germany

Joint work with Johannes Blömer

ACM-SIAM Symposium on Discrete Algorithms (SODA)
January 6th, 2009
Introduction
- Bregman k-median clustering
- Bregman divergences
- Mahalanobis distances and μ-similarity
- Our results

Weak coreset construction
- Γ-weak (k, ϵ)-coresets
- Chen’s coreset construction for metrics
- Initial $O(\log k)$-approximation

$(1 + \epsilon)$-approximation algorithm
- Using weak coresets
- Size bound for Γ

Open problems
1 Introduction
- Bregman k-median clustering
- Bregman divergences
- Mahalanobis distances and μ-similarity
- Our results

2 Weak coreset construction
- Γ-weak (k, ϵ)-coresets
- Chen’s coreset construction for metrics
- Initial $O(\log k)$-approximation

3 $(1 + \epsilon)$-approximation algorithm
- Using weak coresets
- Size bound for Γ

4 Open problems
Bregman k-median clustering

Euclidean k-means clustering:

n points in \mathbb{R}^d
Bregman k-median clustering

Euclidean k-means clustering:

n points in \mathbb{R}^d
Bregman k-median clustering

Euclidean k-means clustering:

- n points in \(\mathbb{R}^d \)
- Find C of size k that minimizes \(\sum_{p \in P} \min_{c \in C} \| p - c \|^2 \)
Bregman k-median clustering

Euclidean k-means clustering:

- n points in \mathbb{R}^d
- Find C of size k that minimizes $\sum_{p \in P} \min_{c \in C} \| p - c \|^2$

Bregman k-median clustering:

- Bregman divergence D_ϕ
- Find C of size k that minimizes $\sum_{p \in P} \min_{c \in C} D_{\phi}(p, c)$
Bregman divergences

Some Bregman divergences:

- **Squared Euclidean distance** (geometric applications)
Coresets and Approximate Clustering for Bregman Divergences

Marcel R. Ackermann

Introduction

k-median clustering
Bregman divergences
μ-similarity
Our results

Weak coresets

(k, ϵ)-coresets
Chen's construction
Initial approximation

Algorithm

Using weak coresets
Size bound for Γ

Open problems

Bregman divergences

Some Bregman divergences:

- **Squared Euclidean distance** (geometric applications)
- **Kullback-Leibler divergence** (information theory, etc.)

Properties:

- centroid is the optimal 1-median of a given cluster
- optimal cluster partition is linear separable

In general:

- asymmetric, no triangle inequality
- may possess singularities on \mathbb{R}^d, i.e.:
 \[D_\phi(p, q) = \infty \]
Bregman divergences

Some Bregman divergences:

- **Squared Euclidean distance** (geometric applications)
- **Kullback-Leibler divergence** (information theory, etc.)
- **Itakura-Saito divergence** (speech processing)
Bregman divergences

Some Bregman divergences:

- **Squared Euclidean distance** (geometric applications)
- **Kullback-Leibler divergence** (information theory, etc.)
- **Itakura-Saito divergence** (speech processing)
- **Mahalanobis distances** (statistical testing, etc.)
- many more …
Bregman divergences

Some Bregman divergences:
- **Squared Euclidean distance** (geometric applications)
- **Kullback-Leibler divergence** (information theory, etc.)
- **Itakura-Saito divergence** (speech processing)
- **Mahalanobis distances** (statistical testing, etc.)
- many more ...

Properties:
- **centroid** is the optimal 1-median of a given cluster
- optimal cluster partition is **linear separable**
Bregman divergences

Some Bregman divergences:
- **Squared Euclidean distance** (geometric applications)
- **Kullback-Leibler divergence** (information theory, etc.)
- **Itakura-Saito divergence** (speech processing)
- **Mahalanobis distances** (statistical testing, etc.)
- many more ...

Properties:
- **centroid** is the optimal 1-median of a given cluster
- optimal cluster partition is **linear separable**

In general:
- asymmetric, no triangle inequality
- may possess singularities on \mathbb{R}^d, i.e.: $D_\phi(p, q) = \infty$
Recent related work

<table>
<thead>
<tr>
<th>Squared Euclidean distance (a very small selection)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kumar et al., 2004]</td>
<td>$(1 + \epsilon) \quad \mathcal{O}(2^{(\frac{k}{\epsilon})^c} dn)$</td>
</tr>
<tr>
<td>[Chen, 2006]</td>
<td>$(1 + \epsilon) \quad \mathcal{O}(ndk + 2^{(\frac{k}{\epsilon})^c} d^2 n^\sigma)$</td>
</tr>
<tr>
<td>[Feldman et al., 2007]</td>
<td>$(1 + \epsilon) \quad \mathcal{O}(ndk + d^{(\frac{k}{\epsilon})^c} + 2^{\tilde{O}(\frac{k}{\epsilon})})$</td>
</tr>
<tr>
<td>[Arthur et al., 2007]</td>
<td>$\mathcal{O}(\log k) \quad \mathcal{O}(ndk)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kullback-Leibler divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baker et al., 1998]</td>
</tr>
<tr>
<td>[Dhillon et al., 2003]</td>
</tr>
<tr>
<td>[Chaudhuri et al., 2008]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Bregman divergences</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Banerjee et al., 2005]</td>
</tr>
<tr>
<td>[Ackermann et al., 2008]*</td>
</tr>
<tr>
<td>[Nock et al., 2008]**</td>
</tr>
</tbody>
</table>

*) under assumption of μ-similarity
**) under a similar assumption
Bregman divergences

Definition

Let $\phi : \mathcal{X} \rightarrow \mathbb{R}$ strictly convex, diff’able on convex $\mathcal{X} \subseteq \mathbb{R}^d$.

$$D_\phi(p, q) = \phi(p) - \phi(q) - \langle \nabla \phi(q), p - q \rangle$$

A Bregman divergence measures the error when approximating a convex function by a tangent hyperplane.
Bregman divergences

Definition

Let $\phi : \mathcal{X} \to \mathbb{R}$ strictly convex, diff’able on convex $\mathcal{X} \subseteq \mathbb{R}^d$.

$$D_{\phi}(p, q) = \phi(p) - \phi(q) - \langle \nabla \phi(q), p - q \rangle$$

A Bregman divergence measures the error when approximating a convex function by a tangent hyperplane.
Bregman divergences

Definition

Let \(\phi : \mathcal{X} \rightarrow \mathbb{R} \) strictly convex, diff’able on convex \(\mathcal{X} \subseteq \mathbb{R}^d \).

\[
D_{\phi}(p, q) = \phi(p) - \phi(q) - \langle \nabla \phi(q), p - q \rangle
\]

\(D_{\phi}(p, q) \) is **Lagrange remainder term** for some \(\xi \in [p, q] \):

\[
D_{\phi}(p, q) = \frac{1}{2} (p - q)^\top \nabla^2 \phi(\xi) (p - q)
\]
Bregman divergences

Definition

Let \(\phi : \mathcal{X} \to \mathbb{R} \) strictly convex, diff’able on convex \(\mathcal{X} \subseteq \mathbb{R}^d \).

\[
D_\phi(p, q) = \phi(p) - \phi(q) - \langle \nabla \phi(q), p - q \rangle
\]

\(D_\phi(p, q) \) is **Lagrange remainder term** for some \(\xi \in [p, q] \):

\[
D_\phi(p, q) = \frac{1}{2} (p - q)^\top \nabla^2 \phi(\xi) (p - q)
\]

Mahalanobis distance w.r.t. positive definite \(A \):

\[
D_A(p, q) = (p - q)^\top A (p - q)
\]
Mahalanobis distances and μ-similarity

Mahalanobis distance w.r.t. positive definite A:

$$D_A(p, q) = (p - q)^\top A (p - q)$$

D_A are "well-natured" Bregman divergences:
- symmetric
- double triangle inequality
Mahalanobis distances and μ-similarity

Mahalanobis distance w.r.t. positive definite A:

$$D_A(p, q) = (p - q)^\top A (p - q)$$

D_A are ”well-natured” Bregman divergences:
- symmetric
- double triangle inequality

Definition

D_ϕ on \mathcal{X} is called μ-**similar** iff there exists a Mahalanobis distance D_A such that for all $p, q \in \mathcal{X}$:

$$\mu D_A(p, q) \leq D_\phi(p, q) \leq D_A(p, q)$$
Mahalanobis distance w.r.t. positive definite A:

$$D_A(p, q) = (p - q)\top A (p - q)$$

D_A are "well-natured" Bregman divergences:
- symmetric
- double triangle inequality

Definition

D_ϕ on X is called μ-similar iff there exists a Mahalanobis distance D_A such that for all $p, q \in X$:

$$\mu D_A(p, q) \leq D_\phi(p, q) \leq D_A(p, q)$$

E.g., choose $0 < \mu \leq \frac{\min_{\zeta \in X} (p - q)\top \nabla^2 \phi(\zeta) (p - q)}{\max_{\xi \in X} (p - q)\top \nabla^2 \phi(\xi) (p - q)} \quad \forall p, q \in X$
Our results

For all μ-similar Bregman divergences D_ϕ

- "strong coreset" construction from [Chen, 2006] gives "weak coresets" for the Bregman k-median problem
Our results

For all μ-similar Bregman divergences D_ϕ

- "strong coreset" construction from [Chen, 2006] gives "weak coresets" for the Bregman k-median problem

- using weak coresets and [A., Blömer, Sohler, 2008]:
 - $(1 + \epsilon)$-approximation algorithm
 - running time $O(ndk + d 2^{(k/\epsilon)c} \log^{k+2} n)$
 (previously: $O(d 2^{(k/\epsilon)c} n)$)
Coresets and Approximate Clustering for Bregman Divergences

Marcel R. Ackermann

Introduction
- k-median clustering
- Bregman divergences
- Mahalanobis distances and μ-similarity
- Our results

Weak coreset construction
- Γ-weak (k, ϵ)-coresets
- Chen’s coreset construction for metrics
- Initial $O(\log k)$-approximation

(1 + ϵ)-approximation algorithm
- Using weak coresets
- Size bound for Γ

Open problems
"a small representation of the clustering behavior of P"
Using coresets

"a small representation of the clustering behavior of P"
Using coresets

"a small representation of the clustering behavior of P"
Using coresets

"a small representation of the clustering behavior of P"
Γ-weak \((k, \epsilon)\)-coresets

More formally:

A "strong" \((k, \epsilon)\)-coreset of \(P\) is a (weighted) set \(S \subseteq X\) such that for all \(C \subseteq X\) with \(|C| = k\):

\[
\text{cost}_w(S, C) = (1 \pm \epsilon) \text{cost}(P, C)
\]
\(\Gamma \)-weak \((k, \epsilon)\)-coresets

More formally:

A "strong" \((k, \epsilon)\)-coreset of \(P\) is a (weighted) set \(S \subseteq \mathcal{X}\) such that for all \(C \subseteq \mathcal{X}\) with \(|C| = k\):

\[
\text{cost}_w(S, C) = (1 \pm \epsilon) \text{ cost}(P, C)
\]

Relaxation: Consider only medians \(C\) that are relevant to \(P\)!
\(\Gamma \)-weak \((k, \epsilon)\)-coresets

More formally:

A "strong" \((k, \epsilon)\)-coreset of \(P \) is a (weighted) set \(S \subseteq \mathcal{X} \) such that for all \(C \subseteq \mathcal{X} \) with \(|C| = k\):

\[
\text{cost}_w(S, C) = (1 \pm \epsilon) \text{ cost}(P, C)
\]

Relaxation: Consider only medians \(C \) that are relevant to \(P \)!

Definition

For a **finite** \(\Gamma \subseteq \mathcal{X} \), a (weighted) set \(S \subseteq \mathcal{X} \) is called a \(\Gamma \)-weak \((k, \epsilon)\)-coreset of \(P \) iff for all \(C \subseteq \Gamma \) with \(|C| = k\):

\[
\text{cost}_w(S, C) = (1 \pm \epsilon) \text{ cost}(P, C)
\]
Chen’s coreset construction for metrics

Chen’s coreset construction for metrics

Introduction

- k-median clustering
- Bregman divergences
- \(\mu \)-similarity
- Our results

Weak coresets

- \((k, \epsilon)\)-coresets
- Chen’s construction
- Initial approximation

Algorithm

- Using weak coresets
- Size bound for \(\Gamma \)

Open problems
Chen’s coreset construction for metrics

1. Obtain initial α-approximation $A = \{a_i\}$
Chen’s coreset construction for metrics

1. Obtain initial α-approximation $A = \{a_i\}$
2. Partition P into exponentially growing ring sets P_{ij}
1. Obtain initial α-approximation $A = \{a_i\}$
2. Partition P into exponentially growing ring sets P_{ij}
3. Choose m points uniformly at random from each ring set and assign weight $\frac{1}{m}|P_{ij}|$
Existence of Γ-weak coresets for D_ϕ

Straight-forward adaptation of [Chen, 2006] seems infeasible! (technical difficulties arise from asymmetry)
Existence of Γ-weak coresets for D_ϕ

Straight-forward adaptation of [Chen, 2006] seems infeasible! (technical difficulties arise from asymmetry)

Lemma

Let $C \subseteq X$ be fixed. If $m = \Omega \left(\frac{\alpha^2}{\epsilon^2 \mu^2} \log(k \log(n)/\delta) \right)$ then with prob. $1 - \delta$ we have $\text{cost}_w(S, C) = (1 \pm \epsilon) \text{cost}(P, C)$.

(using adaptation of a proof from [Chen, 2006] and μ-similarity)
Straight-forward adaptation of [Chen, 2006] seems infeasible! (technical difficulties arise from asymmetry)

Lemma

Let $C \subseteq \mathcal{X}$ be fixed. If $m = \Omega\left(\frac{\alpha^2}{\epsilon^2 \mu^2} \log(k \log(n)/\delta)\right)$ then with prob. $1 - \delta$ we have $\text{cost}_w(S, C) = (1 \pm \epsilon) \text{cost}(P, C)$.

(using adaptation of a proof from [Chen, 2006] and μ-similarity)

Theorem

With high probability, Chen's construction gives a Γ-weak (k, ϵ)-coreset of size $\Theta\left(\frac{\alpha^2 k}{\epsilon^2 \mu^2} \log(n) \log(|\Gamma|^k k \log n)\right)$.

(using Lemma, $\delta = \Theta(1/|\Gamma|^k)$, and union bound)
An initial $\mathcal{O}(\log k)$-approximation algorithm

Use k-means++ seeding from [Arthur, Vassilvitskii, 2007].

Theorem

Let A be obtained by D_ϕ-seeding. Then:

$$\mathbb{E}[\text{cost}(P, A)] \leq \frac{8}{\mu^2} (2 + \ln k) \text{opt}(P).$$
An initial $O(\log k)$-approximation algorithm

Use k-means++ seeding from [Arthur, Vassilvitskii, 2007].

Theorem

Let A be obtained by D_ϕ-seeding. Then:

$$
\mathbb{E}[\text{cost}(P, A)] \leq \frac{8}{\mu^2} (2 + \ln k) \text{opt}(P).
$$

Independently, (essentially) same generalization given by

- [Nock, Luosto, Kivinen, 2008]
- [Sra, Jegelka, Banerjee, 2008]
Coresets and Approximate Clustering for Bregman Divergences

Marcel R. Ackermann

Outline

1 Introduction
 - Bregman k-median clustering
 - Bregman divergences
 - Mahalanobis distances and μ-similarity
 - Our results

2 Weak coreset construction
 - Γ-weak (k, ϵ)-coresets
 - Chen’s coreset construction for metrics
 - Initial $O(\log k)$-approximation

3 $(1 + \epsilon)$-approximation algorithm
 - Using weak coresets
 - Size bound for Γ

4 Open problems
Using Γ-weak coresets

Algorithm $\text{CORECLUSTER}(P, k)$:

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm CLUSTER from [A., Blömer, Sohler, 2008]

$\Gamma = \"\text{set of all medians that are relevant}\"$ size bound?
Using Γ-weak coresets

Algorithm $\text{CORECLUSTER}(P, k)$:

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm CLUSTER from [A., Blömer, Sohler, 2008]

$$\Gamma = \ldots$$

$$\text{cost}(P, \tilde{C})$$
Using Γ-weak coresets

Algorithm $\text{CORECLUSTER}(P, k)$:

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm CLUSTER from [A., Blömer, Sohler, 2008]

$$\Gamma = \Gamma_{\text{CLUSTER}} \cup \ldots$$

with: $\Gamma_{\text{CLUSTER}} \overset{\text{def}}{=} "\text{set of all outputs of algorithm } \text{CLUSTER"}"

$$\text{cost}(P, \tilde{C}) \leq (1 + \epsilon) \text{cost}_w(S, \tilde{C})$$
Using Γ-weak coresets

Algorithm \textsc{CoreCluster}(P, k):

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm \textsc{Cluster} from [A., Blömer, Sohler, 2008]

\[
\Gamma = \Gamma_{\text{Cluster}} \cup \ldots
\]

with: Γ_{Cluster} = ”set of all outputs of algorithm \textsc{Cluster}”

\[
\text{cost}(P, \tilde{C}) \leq (1 + \epsilon) \text{cost}_w(S, \tilde{C}) \leq (1 + \epsilon)^2 \text{opt}(S, w)
\]
Using Γ-weak coresets

Algorithm $\text{CORECLUSTER}(P, k)$:

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm CLUSTER from [A., Blömer, Sohler, 2008]

$$\Gamma = \Gamma_{\text{CLUSTER}} \cup \ldots$$

with: $\Gamma_{\text{CLUSTER}} \triangleq ”$ set of all outputs of algorithm $\text{CLUSTER}”$

$C_{\text{opt}}(P) \triangleq ”$ optimal k-medians of $P”$

$$\text{cost}(P, \tilde{C}) \leq (1 + \epsilon) \text{cost}_w(S, \tilde{C}) \leq (1 + \epsilon)^2 \text{opt}(S, w) \leq (1 + \epsilon)^2 \text{cost}_w(S, C_{\text{opt}}(P))$$
Using Γ-weak coresets

Algorithm $\text{CoreCluster}(P, k)$:

1. Construct Γ-weak (k, ϵ)-coreset (S, w) of P
2. Compute $(1 + \epsilon)$-approximation \tilde{C} of (S, w) using algorithm Cluster from [A., Blömer, Sohler, 2008]

\[
\Gamma = \Gamma_{\text{Cluster}} \cup C_{\text{opt}}(P)
\]

with: Γ_{Cluster} = ”set of all outputs of algorithm $\text{Cluster}”$
\[C_{\text{opt}}(P) = “\text{optimal } k\text{-medians of } P”\]

\[
\text{cost}(P, \tilde{C}) \leq (1 + \epsilon) \text{cost}_w(S, \tilde{C}) \leq (1 + \epsilon)^2 \text{opt}(S, w)
\]
\[
\leq (1 + \epsilon)^2 \text{cost}_w(S, C_{\text{opt}}(P)) \leq (1 + \epsilon)^3 \text{cost}(P, C_{\text{opt}}(P)) = \text{opt}(P)
\]
Size bound for Γ

$$\Gamma_{\text{\textsc{cluster}}} \doteq \"\text{set of all outputs}\ of\ \text{algorithm}\ \text{\textsc{cluster}}\"$$

Key features of algorithm $\text{\textsc{cluster}}$:

- each output median is computed as the (weighted) centroid of a poly(k/ϵ)-sized subset of P
Size bound for Γ

$\Gamma_{\text{CLUSTER}} \triangleq "\text{set of all outputs of algorithm } C_{\text{LUSTER}}"$

Key features of algorithm C_{LUSTER}:
- Each output median is computed as the (weighted) centroid of a $\text{poly}(k/\epsilon)$-sized subset of P

$\Rightarrow |\Gamma_{\text{CLUSTER}}| \leq n^{\text{poly}(k/\epsilon)}$
Size bound for Γ

$\Gamma_{\text{CLUSTER}} \triangleq \text{"set of all outputs of algorithm } C_{\text{LUSTER}}\text{"}$

Key features of algorithm C_{LUSTER}:

- each output median is computed as the (weighted) centroid of a $\text{poly}(k/\epsilon)$-sized subset of P

$\Rightarrow |\Gamma_{\text{CLUSTER}}| \leq n^{\text{poly}(k/\epsilon)}$

$C_{\text{opt}}(P) \triangleq \text{"optimal } k\text{-medians of } P\text{"}$

$\Rightarrow |C_{\text{opt}}(P)| = k$
Coresets and Approximate Clustering for Bregman Divergences

Marcel R. Ackermann

Introduction

k-median clustering
Bregman divergences
μ-similarity
Our results

Weak coresets

(k, ϵ)-coresets
Chen’s construction
Initial approximation

Algorithm

Using weak coresets
Size bound for Γ

Open problems

Size bound for Γ

\[\Gamma_{\text{Cluster}} \triangleq \text{"set of all outputs of algorithm } C_{\text{Cluster}"} \]

Key features of algorithm C_{Cluster}:

- each output median is computed as the (weighted) centroid of a $\text{poly}(k/\epsilon)$-sized subset of P

\[\Rightarrow |\Gamma_{\text{Cluster}}| \leq n^{\text{poly}(k/\epsilon)} \]

$C_{\text{opt}}(P) \triangleq \text{"optimal } k\text{-medians of } P"$

\[\Rightarrow |C_{\text{opt}}(P)| = k \]

Lemma

\[|\Gamma| \leq n^{\text{poly}(k/\epsilon)} + k \]
Results

Corollary

W.h.p., using Chen’s construction we obtain a Γ-weak (k, ϵ)-coreset (S, w) of size $\Theta(\text{poly}(k/\epsilon) \log^2(n))$ in time $O(ndk + |S|)$.
Results

Corollary

W.h.p., using Chen’s construction we obtain a Γ-weak (k, ϵ)-coreset (S, w) of size $\Theta(\text{poly}(k/\epsilon) \log^2(n))$ in time $O(ndk + |S|)$.

Theorem

W.c.p., algorithm CORECluster computes a $(1 + \epsilon)$-approximate solution to the μ-similar Bregman k-median problem in time $O(ndk + d 2^{(k/\epsilon)c} \log^{k+2} n)$.
1 Introduction
 - Bregman k-median clustering
 - Bregman divergences
 - Mahalanobis distances and μ-similarity
 - Our results

2 Weak coreset construction
 - Γ-weak (k, ϵ)-coresets
 - Chen's coreset construction for metrics
 - Initial $O(\log k)$-approximation

3 $(1 + \epsilon)$-approximation algorithm
 - Using weak coresets
 - Size bound for Γ

4 Open problems
Some open problems

- Are there ”strong” coresets for Bregman k-median problem?
Some open problems

- Are there "strong" coresets for Bregman k-median problem?
- Can we give coresets in the presence of singularities? (i.e., for non-similar Bregman divergences)
Some open problems

- Are there "strong" coresets for Bregman k-median problem?
- Can we give coresets in the presence of singularities? (i.e., for non-similar Bregman divergences)
- Are there coresets with size independent of n? (compare to [Har-Peled, Kushal, 2005])
Some open problems

- Are there "strong" coresets for Bregman k-median problem?
- Can we give coresets in the presence of singularities? (i.e., for non-similar Bregman divergences)
- Are there coresets with size independent of n? (compare to [Har-Peled, Kushal, 2005])
- Are there $(1 + \epsilon)$-approximation algorithms for Bregman divergences with singularities in their domain? (factor $O(\log n)$ from [Chaundhuri, McGregor, 2008] is tight!)

What further techniques from Euclidean geometry can be applied to Bregman divergences? (e.g., dimensionality reduction?)

What about non-Bregman, non-metric dissimilarity measures such as Pearson correlation, cosine similarity, etc.?
Some open problems

- Are there "strong" coresets for Bregman k-median problem?
- Can we give coresets in the presence of singularities? (i.e., for non-similar Bregman divergences)
- Are there coresets with size independent of n? (compare to [Har-Peled, Kushal, 2005])
- Are there $(1 + \epsilon)$-approximation algorithms for Bregman divergences with singularities in their domain? (factor $O(\log n)$ from [Chaundhuri, McGregor, 2008] is tight!)
- What further techniques from Euclidean geometry can be applied to Bregman divergences? (e.g., dimensionality reduction?)
Some open problems

- Are there “strong” coresets for Bregman k-median problem?
- Can we give coresets in the presence of singularities? (i.e., for non-similar Bregman divergences)
- Are there coresets with size independent of n? (compare to [Har-Peled, Kushal, 2005])
- Are there $(1 + \epsilon)$-approximation algorithms for Bregman divergences with singularities in their domain? (factor $\mathcal{O}(\log n)$ from [Chaundhuri, McGregor, 2008] is tight!)
- What further techniques from Euclidean geometry can be applied to Bregman divergences? (e.g., dimensionality reduction?)
- What about non-Bregman, non-metric dissimilarity measures such as Pearson correlation, cosine similarity, etc.?
Thanks for your attention!